

l'Hôpital's Rule If $\frac{f(a)}{g(b)}=\frac{0}{0}$ or $=\frac{\infty}{\infty}$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$	Slope of a Parametric equation Given a $x(t)$ and a $y(t)$ the slope is$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$	Values of Trigonometric Functions for Common Angles			
		θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
		0°	0	1	0
Euler's MethodIf given that $\frac{d y}{d x}$ and that thesolution passes through $\left(x_{o}, y_{o}\right)$,$-\quad$ Use a tangent line to buildthe curve$y=y_{1}+\frac{d y}{d x}\left(x-x_{1}\right)$	Polar Curve For a polar curve $r(\theta)$, the AREA inside a "leaf" is $\int_{\theta_{1}}^{\theta_{2}} \frac{1}{2}[r(\theta)]^{2} d \theta$ where θ_{1} and θ_{2} are the "first" two times that $r=0$. The SLOPE of $r(\theta)$ at a given θ is $\begin{aligned} & x=r \cos \theta \quad \mathrm{y}=\mathrm{r} \sin \theta \\ & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{d y / d \theta}{d x / d \theta} \end{aligned}$	$\frac{\pi}{6}, 30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
		37°	3/5	4/5	3/4
		$\frac{\pi}{4}, 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
		53	4/5	3/5	4/3
		$\frac{\pi}{3}, 60^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
		$\frac{\pi}{2}, 90^{\circ}$	1	0	" ∞ "
		$\pi, 180^{\circ}$	0	-1	0
Tabular Integration - When one piece is not the derivative of the other $\int \ln x d x=$	Ratio Test The series $\sum_{k=0}^{\infty} a_{k}$ converges if $\lim _{k \rightarrow \infty}\left\|\frac{a_{k+1}}{a_{k}}\right\|<1$ If the limit equal 1 , you know nothing. Interval of convergence (Test endpoints)	L'hopitals Rule: When the limit of a function is $\frac{0}{0}$ or $\frac{\infty}{\infty}$ Take the derivative of the top and the derivative of the bottom and then re-evaluate the limit			
lnx ${ }^{\text {l/ }}$ dx					
1/x					
$\begin{aligned} & \int \ln x d x=x \ln x-\int 1 d x \\ & \int \ln x d x=x \ln x-x+C \end{aligned}$					
Taylor Series If the function f is "smooth" at $x=a$, then it can be approximated by the $n^{\text {th }}$ degree polynomial $\begin{aligned} f(x) \approx f(a) & +f^{\prime}(a)(x-a) \\ & +\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots \\ & +\frac{f^{(n)}(a)}{n!}(x-a)^{n} . \end{aligned}$ Take derivatives, plug in your center and divide by your factorials.	Lagrange Error Bound If $P_{n}(x)$ is the $n^{\text {th }}$ degree Taylor polynomial of $f(x)$ about c and $\left\|f^{(n+1)}(t)\right\| \leq M$ for all t between x and c, then $\left\|f(x)-P_{n}(x)\right\| \leq \frac{M}{(n+1)!}\|x-c\|^{n+1}$ M=Maximum of the next derivative ($\mathrm{x}-\mathrm{c}$) is the distance from center $(\mathrm{n}+1)$! Is the next derivative $\left\|f(x)-P_{n}(x)\right\|$ is the actual error	Sum of an infinite geometric series $S=\frac{1^{s t} \text { term }}{1-r}$ where r is the common ratio			
Maclaurin Series A Taylor Series about $x=0$ is called Maclaurin. $\begin{gathered} e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\ \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \\ \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\ \frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \\ \ln (x+1)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \end{gathered}$	Alternating Series Error Bound If $S_{N}=\sum_{k=1}^{N}(-1)^{n} a_{n}$ is the $N^{\text {th }}$ partial sum of a convergent alternating series, then $\left\|S_{\infty}-S_{N}\right\| \leq\left\|a_{N+1}\right\|$ This means error is less than the next term				

